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Features of “good” index structures 

 Dynamicity 
 support insertions and deletions and minimize their costs 

 Disk storage 
 for dealing with large collections of data 

 CPU & I/O optimization 
 support different distance measures with completely 

different CPU requirements, e.g., L2 and quadratic-form 
distance. 

 Extensibility 
 similarity queries, i.e., range query, k-nearest neighbors 

query 
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Centralized Index Structures 

for Large Databases 

1. M-tree family 

 

2. hash-based metric indexing 

 

3. performance trials 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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The M-tree 

 Inherently dynamic structure 

 Disk-oriented (fixed-size nodes) 

 Built in a bottom-up fashion 

 Inspired by R-trees and B-trees 

 

 All data in leaf nodes 

 Internal nodes: pointers to subtrees and additional 

information 

 Similar to GNAT, but objects are stored in leaves. 
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M-tree: Internal Node 

 Internal node consists of an entry for each subtree 

 Each entry consists of: 

 Pivot: p  

 Covering radius of the sub-tree: rc  

 Distance from p to parent pivot pp: d(p,pp) 

 Pointer to sub-tree: ptr   

 

 

 

 All objects in subtree ptr are within the distance rc from p. 
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M-tree: Leaf Node 

 leaf node contains data entries 

 each entry consists of pairs: 

 object (its identifier): o 

 distance between o and its parent pivot: d(o,op) 
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o7 

M-tree: Example 

o1 
o6 

o10 

o3 

o2 

o5 

o4 

o9 

o8 

o11 

o1 4.5 -.- o2 6.9 -.- 

o1 1.4 0.0 o10 1.2 3.3 o7 1.3 3.8 o2 2.9 0.0 o4 1.6 5.3 

o2 0.0 o8 2.9 o1 0.0 o6 1.4 o10 0.0 o3 1.2 

o7 0.0 o5 1.3 o11 1.0 o4 0.0 o9 1.6 

Covering 

radius 

Distance 

to parent 

Distance 

to parent 
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M-tree: Insert 

 Insert a new object oN: 

 recursively descend the tree to locate the most 

suitable leaf for oN        

 in each step enter the subtree with pivot p for 

which: 

 

 no enlargement of radius rc needed, i.e., d(oN,p) ≤ rc 

 in case of ties, choose one with p nearest to oN  

 

 minimize the enlargement of rc  
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M-tree: Insert (cont.) 

 when reaching leaf node N then: 

 if N is not full then store oN in N  

 else Split(N,oN). 
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M-tree: Split 

Split(N,oN): 

 Let S be the set containing all entries of N and oN 

 Select pivots p1 and p2 from S 

 Partition S to S1 and S2 according to p1 and p2  

 Store S1 in N and S2 in a new allocated node N’ 

 If N is root 

 Allocate a new root and store entries for p1, p2  there 

 else (let Np and pp be the parent node and parent pivot of N) 

 Replace entry pp with p1 

 If Np is full, then Split(Np,p2) 

 else store p2 in node Np  
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M-tree: Pivot Selection 

 Several pivots selection policies 
 RANDOM – select pivots p1, p2 randomly 

 m_RAD – select p1, p2 with minimum (r1
c + r2

c) 

 mM_RAD – select p1, p2 with minimum max(r1
c, r2

c) 

 M_LB_DIST – let p1 = pp and p2 = oi | maxi { d(oi,p
p) } 

 Uses the pre-computed distances only 

 Two versions (for most of the policies): 

 Confirmed – reuse the original pivot pp and select only one 

 Unconfirmed – select two pivots (notation: RANDOM_2) 

 In the following, the mM_RAD_2 policy is used. 
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M-tree: Split Policy 

 Unbalanced 

 Generalized hyperplane 

 

 Balanced 

 Larger covering radii 

 Worse than unbalanced 

one 

p2 

p1 

p2 

p1 

 Partition S to S1 and S2 according to p1 and p2  
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M-tree: Range Search 

Given R(q,r): 

 Traverse the tree in a depth-first manner 

 In an internal node, for each entry p,rc,d(p,pp),ptr 
 Prune the subtree if |d(q,pp) – d(p,pp)| – rc > r 

 Application of the pivot-pivot constraint 

q 

q 

r 

p 
rc 

pp r 

p 
rc 

pp 
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M-tree: Range Search (cont.) 

 If not discarded, compute d(q,p) and 

 Prune the subtree if d(q,p) – rc > r 

 Application of the range-pivot constraint 

 

 

 

 

 

 All non-pruned entries are searched recursively. 

q 
p 

rc r 
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M-tree: Range Search in Leaf Nodes 

 In a leaf node, for each entry o,d(o,op) 

 Ignore entry if |d(q,op) – d(o,op)| > r  

 else compute d(q,o) and check d(q,o) ≤ r 

 Application of the object-pivot constraint 
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M-tree: k-NN Search 

Given k-NN(q): 

 Based on a priority queue and the pruning 
mechanisms applied in the range search. 

 Priority queue:  
 Stores pointers to sub-trees where qualifying objects can 

be found. 

 Considering an entry E=p,rc,d(p,pp),ptr, the pair 
ptr,dmin(E) is stored. 

  dmin(E)=max { d(p,q) – rc, 0 } 

 Range pruning: instead of fixed radius r, use the 
distance to the k-th current nearest neighbor. 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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Bulk-Loading Algorithm 

 first extension of M-tree 

 improved tree-building (insert) algorithm 

 requires the dataset to be given in advance 

 

 Notation: 

 Dataset X={o1,…,on} 

 Number of entries per node: m  

 Bulk-Loading Algorithm: 

 First phase: build the M-tree 

 Second phase: refinement of unbalanced tree 
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Bulk-Loading: First Phase 

 randomly select l pivots P={p1,…,pl} from X  

 Usually l=m  

 objects from X are assigned to the nearest pivot 

producing l subsets P1,…,Pl 

 recursively apply the bulk-loading algorithm to the 

subsets and obtain l sub-trees T1,…,Tl 

 leaf nodes with maximally l objects 

 create the root node and connect all the sub-trees to 

it. 
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Bulk-Loading: Example (1) 
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Bulk-Loading: Discussion 

Problem of choosing pivots P={p1,…,pl}  

 sparse region  shallow sub-tree 

 far objects assigned to other pivots 

 dense region  deep sub-tree 

 

 observe this phenomenon in the example 
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Bulk-Loading: Second Phase 

 refinement of the unbalanced M-tree 

 apply the following two techniques to adjust the set 

of pivots P={p1,…,pl} 

 

 under-filled nodes – reassign to other pivots and  

delete corresponding pivots from P  

 deeper subtrees – split into shallower ones and add the 

obtained pivots to P 
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 Under-filled nodes in the example: o’1,o9 

Bulk-Loading: Example (2) 

o1 

o’1 o5 o4 o’4 o5 

o4 o’3 

o”3 o9 o8 
o”3 o8 

o’3 
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Bulk-Loading: Example (3) 

 After elimination of under-filled nodes. 
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 Sub-trees rooted in o4 and o3 in the tree are deeper 

 

 split them into new subtrees rooted in o’4, o5, o”3, o8, 

o6, o7                                        

 add them into P and remove o4,o3 

 build the super-tree (two levels) over the final set of 

pivots P={o2,o’4,o5,o”3,o8,o6,o7} – from Sample (3) 

Bulk-Loading: Example (4) 
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Bulk-Loading: Example (5) – Final 
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Bulk-Loading: Optimization 

 Reduce the number of distance computations in the 

recursive calling of the algorithm 

 after initial phase, we have distances d(pj,oi) for all    

objects X={o1,…,on} and all pivots P={p1,…,pl} 

 Assume the recursive processing of P1 

 New set of pivots is picked {p1,1 , …, p1,l’} 

 During clustering, we are assigning every object oP1 to its 

nearest pivot. 

 The distance d(p1,j ,o) can be lower-bounded: 

   |d(p1,o) – d(p1,p1,j )| ≤ d(p1,j ,o) 

 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 30 

Bulk-Loading: Optimization (cont.) 

 If this lower-bound is greater than the distance to 

the closest pivot p1,N so far, i.e., 

  |d(p1,o) – d(p1,p1,j )| > d(p1,N ,o) 

 then the evaluation of d(p1,j ,o) can be avoided. 

 

 Cuts costs by 11% 

 It uses pre-computed distances to a single pivot. 

 by 20% when pre-computed distances to multiple pivots 

are used. 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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Multi-Way Insertion Algorithm 

 another extension of M-tree insertion algorithm 

 objective: build more compact trees 

 reduce search costs (both I/O and CPU) 

 for dynamic datasets (not necessarily given in 

advance) 

 increase insertion costs slightly 

 the original single-way insertion visits exactly one 

root-leaf branch 

 leaf with no or minimum increase of covering radius 

 not necessarily the most convenient 
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Multi-Way Insertion: Principle 

 when inserting an object oN 

 run the point query R(oN,0) 

 for all visited leaves (they can store oN without radii 

enlargement): compute the distance between oN 

and the leaf’s pivot 

 choose the closest pivot (leaf) 

 if no leaf visited – run the single-way insertion 
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Multi-Way Insertion: Analysis 

Insertion costs: 

 25% higher I/O costs (more nodes examined) 

 higher CPU costs (more distances computed) 

 

Search costs: 

 15% fewer disk accesses 

 almost the same CPU costs for the range query 

 10% fewer distance computations for k-NN query 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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The Slim Tree 

 extension of M-tree – the same structure 

 speed up insertion and node splitting  

 improve storage utilization 

 new node-selection heuristic for insertion  

 new node-splitting algorithm  

 special post-processing procedure  

 make the resulting trees more compact. 

 

 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 37 

Slim Tree: Insertion 

Starting at the root node, in each step: 

 find a node that covers the incoming object 

 if none, select the node whose pivot is the nearest  

 M-tree would select the node whose covering radius 

requires the smallest expansion 

 if several nodes qualify, select the one which 

occupies the minimum space 

 M-trees would choose the node with closest pivot 
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Slim Tree: Insertion Analysis 

 fill insufficiently occupied nodes first 

 defer splitting, boost node utilization, and cut the tree size 

 experimental results (the same mM_RAD_2 

splitting policy) show: 

 lower I/O costs  

 nearly the same number of distance computations  

 this holds for both the tree building procedure and the 

query execution 
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Slim Tree: Node Split 

 splitting of the overfilled nodes – high costs 

 mM_RAD_2 strategy is considered the best so far 

 Complexity O(n3) using O(n2) distance computations 

 the Slim Tree splitting based on the minimum 

spanning tree (MST) 

 Complexity O(n2logn) using O(n2) distance computations 

 the MST algorithm assumes a full graph 

 n objects  

 n(n-1) edges – distances between objects 
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Slim Tree: Node Split (cont.) 

Splitting policy based on the MST: 

1. build the minimum spanning tree on the full graph 

2. delete the longest edge 

3. the two resulting sub-graphs form the new nodes 

4. choose the pivot for each node as the object whose 

distance to the others in the group is the shortest 
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Slim Tree: Node Split – Example  

 (a) the original Slim Tree node 

 (b) the minimum spanning tree 

 (c) the new two nodes 

o1 

o2 

o3 o4 

o5 

o7 

o6 

oN 
o1 

o2 

o3 o4 

o5 

o7 

o6 

oN o1 

o2 

o3 o4 

o5 

o7 

o6 

oN 

(a) (b) (c) 
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Slim Tree: Node Split – Discussion 

 does not guarantee the balanced split 

 a possible variant (more balanced splits): 

 choose the most appropriate edge from among the longer 

edges in the MST 

 if no such edge is found (e.g., for a star-shaped dataset), 

accept the original unbalanced split 

 

 experiments prove that: 

 tree building using the MST algorithm is at least forty times 

faster than the mM_RAD_2 policy  

 query execution time is not significantly better 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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Slim-Down Algorithm 

 post-processing procedure 

 reduce the fat-factor of the tree 

 basic idea: reduce the overlap between nodes on one level  

 minimize number of nodes visited by a point query, e.g., 

R(o3,0) 

 

o4 

o3 
o2 o1 

o5 

Node N 

Node M 

o4 

o3 
o2 o1 

o5 

Node N 

Node M 
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Slim-Down Algorithm: The Principle 

For each node N at the leaf level: 
1. Find object o furthest from pivot of N  

2. Search for a sibling node M that also covers o.  
If such a not-fully-occupied node exists, move o from N to M 

and update the covering radius of N.    
 

 Steps 1 and 2 are applied to all nodes at the given 
level. If an object is relocated after a complete loop, 
the entire algorithm is executed again. 

 

 Observe moving of o3 from N to M on previous slide. 
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Slim-Down Algorithm: Discussion 

 Prevent from infinite loop 

 cyclic moving of objects o4,o5,o6 

 Limit the number of algorithm                             

cycles  

 

 

 Trials proved reducing of I/O costs of at least 10% 

 The idea of dynamic object relocation can be also 

applied to defer splitting. 

 Move distant objects from a node instead of splitting it. 

o1 o2 

o3 

o5 o6 

o4 

o8 

o9 

o7 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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Generalized Slim-Down Algorithm 

 generalization of Slim-down algorithm for non-leaf 

tree levels 

 the covering radii rc must be taken into account 

before moving a non-leaf entry 

 the generalized Slim-down starts from the leaf level 

 follow the original Slim-down algorithm for leaves 

 ascend up the tree terminating in the root 
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Generalized Slim-Down: The Principle 

For each entry E=p,rc,… at given non-leaf level: 

 pose range query R(p,rc),  

 the query determines the set of nodes that entirely 

contain the query region, 

 from this set, choose the node M whose parent pivot 

is closer to p than to pp, 

 if such M exists, move the entry E from N to M, 

 if possible, shrink the covering radius of N. 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 50 

Generalized Slim-Down: Example 

 Leaf level: 
 move two objects from o3 and o4 to o1 – shrink o3 and o4 

 Upper level: 
 originally node M contains o1,o4 and node N contains o2,o3 

 swap the nodes of o3 and o4 

o1 
o4 

o2 

o3 

o1 
o4 

o2 

o3 

Node M 

Node N 

Node M Node N 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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Pivoting M-tree 

 upgrade of the standard M-tree 

 bound the region covered by nodes more tightly 

 define additional ring regions that restrict the ball regions 

 ring regions: pivot p and two radii rmin, rmax 

 such objects o that: rmin ≤ d(o,p) ≤ rmax 

 basic idea: 

 Select additional pivots 

 Every pivot defines two boundary values between which all 

node’s objects lie. 

 Boundary values for each pivot are stored in every node. 

(see a motivation example on the next slide) 
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PM-tree: Motivation Example 

 original M-tree 

 range query R(q,r)             

intersects the node 

region 

 PM-tree (two pivots) 

 this node not visited 

for query R(q,r) 

r 

q 

p2 r 

q 

p1 
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PM-tree: Structure 

 select additional set of pivots |P|=np 

 leaf node entry: o,d(o,op),PD 

 PD – array of npd pivot distances: PD[i]=d(pi,o) 

 Parameter npd < np 

 internal node entry: p,rc,d(p,pp),ptr,HR 

 HR – array of nhr intervals defining ring regions 

 

 

 

 parameter nhr < np  

})|),(max({max].[

})|),(min({min].[

ptropodjHR

ptropodjHR

j
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PM-tree: Insertion 

 insertion of object oN 

 the HR arrays of nodes visited during insertion must 

be updated by values d(oN,pi) for all i ≤ nhr 

 the leaf node:  

 create array PD and fill it with values d(oN,pj),  j ≤ npd 

 values d(oN,pj) are computed only once and used 

several times – max(nhr ,npd) distance computations 

 insertions may force node splits 
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PM-tree: Node Split 

 node splits require some maintenance 

 leaf split: 

 set arrays HR of two new internal entries 

 set HR[i].min and HR[i].max as min/max of PD[j] 

 compute additional distances: d(pj ,o),  j (npd < j ≤ nhr )                                           

and take them into account 

 can be expensive if nhr >> npd 

 internal node split: 

 creating two internal node entries with HR 

 set these HR arrays as union over all HR arrays of 

respective entries 
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PM-tree: Range Query 

Given R(q,r):            

 evaluate distances d(q,pi),  i (i ≤ max(nhr ,npd)) 

 traverse the tree, internal node p,rc,d(p,pp),ptr,HR 
is visited if both the expressions hold: 

 

 
 

 

 leaf node entry test: 
 

 M-tree: the first condition only 

crrpqd ),(
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PM-tree: Parameter Setting 

 general statements: 

 existence of PD arrays in leaves reduce number of 

distance computations but increase the I/O cost 

 the HR arrays reduce both CPU and I/O costs 

 experiments proof that: 

 npd=0 decreases I/O costs by 15% to 35% comparing to M-

tree (for various values of nhr) 

 CPU cost reduced by about 30% 

 npd=nhr / 4 leads to the same I/O costs as for M-tree 

 with this setting – up to 10 times faster 

 particular parameter setting depends on application 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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The M+-tree 

 modification of the M-tree 

 restrict the application to Lp metrics (vector spaces) 

 based on the concept of key dimension 

 each node partitioned into two twin-nodes 

 partition according to a selected key dimension 
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M+-tree: Principles 

 in an n-dimensional vector space 

 key dimension for a set of objects is the dimension 

along which the data objects are most spread 

 for any dimension Dkey and vectors (x1,…xn),(y1,…yn) 

 
 

 this holds also for other Lp metrics 

 this fact is applied to prune the search space 

 

22
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M+-tree: Structure 

 internal node is divided into two subsets 

 according to a selected dimension 

 leaving a gap between the two subsets 

 the greater the gap the better filtering 

 internal node entry: 

 

 Dkey – number of the key dimension 

 ptrleft ,ptrright – pointers to the left and right twin-nodes 

 dlmax – maximal key-dimension value of the left twin 

 drmin – minimal key-dimension value of the right twin 

 rightrminlmaxleftkey
pc ptrddptrDppdrp ,,,,),,(,,
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M+-tree: Example 

 splitting of an overfilled node: 

 objects of both twins are considered as a single set 

 apply standard mM_RAD_2 strategy 

 select the key dimension for each node separately 

oN oN 
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M+-tree: Performance 

 slightly more efficient than M-tree 

 better filtering for range queries with small radii 

 practically the same for larger radii 

 nearest neighbor queries: 

 a shorter priority queue – only one of the twin-nodes 

 save some time for queue maintenance 

 

 moderate performance improvements 

 application restricted to vector datasets with Lp 
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M-tree Family 

 The M-tree 

 Bulk-Loading Algorithm 

 Multi-Way Insertion Algorithm 

 The Slim Tree 

 Slim-Down Algorithm 

 Generalized Slim-Down Algorithm 

 Pivoting M-tree 

 The M+-tree 

 The M2-tree 
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The M2-tree 

 generalization of M-tree 

 able to process complex similarity queries 

 combined queries on several metrics at the same time 

 for instance: an image database with keyword-annotated 

objects and color histograms 

 query: Find images that contain a lion and the scenery 

around it like this. 

 qualifying objects identified by a scoring function df 

 combines the particular distances (according to several 

different measures) 
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M2-tree: Structure 

 each object characterized by several features 

 e.g. o[1],o[2] 

 respective distance measures may differ: d1,d2 

 leaf node: M-tree vs. M2-tree 

 

 internal node: M-tree vs. M2-tree 

 ),(, podo  ])2[],1[(],2[]),1[],1[(],1[ 21 podopodo

 ptrppdrp pc ),,(,,

 ptrppdrpppdrp pcpc ]),2[],2[(],2[],2[]),1[],1[(],1[],1[ 21
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M2-tree: Example 

 the space transformation according to particular 

features can be seen as an n-dimensional space 

 the subtree region forms a hypercube 

 

o1 

o2 
o5 

o4 
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M2-tree: Range Search 

Given R(q,r): 

 M-tree prunes a subtree if |d(q,pp) – d(p,pp)| – rc > r 

 M2-tree: compute the lower bound for every feature 

 

 combine these bounds using the scoring function df 

 visit those entries for which the result is ≤ r 

 

 analogous strategy for nearest neighbor queries 

)0],[|])[],[(])[],[(min(|, iripipdipiqdi cp
i

p
i 
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M2-tree: Performance 

 running k-NN queries 

 image database mentioned in the example 

 M2-tree compared with sequential scan 

 the same I/O costs 

 reduced number of distance computations 

 M2-tree compared with Fagin’s A0 (two M-trees) 

 M2-tree saves about 30% of I/Os 

 about 20% of distance computations 

  A0 have higher I/O cost than the sequential scan 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 71 

Centralized Index Structures 

for Large Databases 

1. M-tree family 

 

2. hash-based metric indexing 

 Distance Index (D-index) 

 Extended D-Index (eD-index) 

 

3. performance trials 
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Distance Index (D-index) 

 Hybrid structure 

 combines pivot-filtering and partitioning. 

 Multilevel structure based on hashing 

 one -split function per level. 

 The first level splits the whole data set. 

 Next level partitions the exclusion zone of the 

previous level. 

 The exclusion zone of the last level forms the 

exclusion bucket of the whole structure. 
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D-index: Structure 

4 separable buckets at 

the first level 

2 separable buckets at 

the second level 

exclusion bucket of 

the whole structure 
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D-index: Partitioning 

 Based on excluded middle partitioning 

 ball partitioning variant is used. 

 

 

 bps1,(x)= 

0  if d(x,p) ≤ dm -  

1  if d(x,p) > dm +  

−  otherwise 

dm 

2 

p Separable set 1 

Separable set 0 

Exclusion set 
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D-index: Binary -Split Function 

 Binary mapping: bps1,: D → {0,1,−} 

 -split  function,  ≥ 0 

 also called the first order -split function 

 

 Separable property (up to 2 ): 

 x,y  D, bps1,(x) = 0 and bps1,(y) = 1  d(x,y) > 2 

 No objects closer than 2 can be found in both the 
separable sets. 

 Symmetry property: x,y  D, 2 ≥ 1,  

  bps1,2(x)  −, bps1,1(y) = −      d(x,y) > 2 - 1 
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2 

D-index: Symmetry Property 

 Ensures that the exclusion set “shrinks” in a 

symmetric way as  decreases. 

 We want to test whether a query intersects the 

exclusion set or not. 

2(+r) 

q2 

r 

q1 

r 
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dm1 

2

 

D-index: General -Split Function 

 Combination of several binary -split functions 

 two in the example 

 

dm2 

2

 

Separable 

set 1 

Separable 

set 0 

Exclusion 

set 

Separable 

set 3 

Separable 

set 2 
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D-index: General -Split Function 

 A combination of n first order -split functions: 

 bpsn,: D → {0..2n-1, −} 

 

 bpsn,(x) =  

 

 Separable & symmetry properties hold 

 resulting sets are also separable up to 2. 

−   if i, bpsi
1,(x) = − 

b   all bpsi
1,(x) form a binary number b 
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D-index: Insertion 
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D-index: Insertion Algorithm 

 Dindex(X, m1, m2, …, mh) 

 h – number of levels, 

 mi – number of binary functions combined on level i. 

 Algorithm – insert the object oN: 

 for i=1 to h do 

  if bpsmi,(oN)  ‘-’ then 

     oN  bucket with the index bpsmi,(oN). 

     exit 

  end if 

 end do 

 oN  global exclusion bucket. 
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D-index: Insertion Algorithm (cont.) 

 The new object is inserted with one bucket access. 

 

 Requires               distance computations 

 assuming oN was inserted in a bucket on the level j. 

 

 

j

i im
1
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D-index: Range Query 

 Dindex(X, m1, m2, …, mh) 

 h – number of levels, 

 mi – number of binary functions combined on level i. 

 

Given a query R(q,r) with r ≤: 

for i=1 to h do 

 search in the bucket with the index bpsmi,0(q). 

end do 

search in the global exclusion bucket. 

 Objects o, d(q,o)≤r, are reported on the output. 
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D-index: Range Search (cont.) 

q 

r 

q 

r 

q 

r 

q 

r 

q 

r 

q 

r 
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D-index: Range Query (cont.) 

 The call bpsmi,0(q) always returns a value between 

0 and 2mi -1. 

 Exactly one bucket per level is accessed if r ≤ 

 h+1 bucket access. 

 

 Reducing the number of bucket accesses: 

 the query region is in the exclusion set  proceed the next 

level directly, 

 the query region is in a separable set  terminate the 

search. 
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D-index: Advanced Range Query 

for i = 1 to h 

 if bpsmi,+r (q)  − then  (exclusively in the separable bucket) 

  search in the bucket with the index bpsmi,+r (q). 

  exit   (search terminates) 

 end if  

 if r ≤  then   (the search radius up to ) 

  if bpsmi,-r (q)  − then (not exclusively in the exclusion zone) 

        search in the bucket with the index bpsmi,r (q). 

  end if 

 else    (the search radius greater than ) 

  let {i1,…in} = G(bpsmi,r (q) ) 

  search in the buckets with the indexes i1,…,in. 

 end if 

end for 
search in the global exclusion bucket. 
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D-index: Advanced Range Query (cont.) 

 The advanced algorithm is not limited to r≤. 

 All tests for avoiding some bucket accesses are 

based on manipulation of parameters of split 

functions (i.e. ). 

 The function G() returns a set of bucket indexes: 

 all minuses (-) in the split functions’ results are substituted 

by all combinations of ones and zeros, 

 e.g. bps3,(q)=‘1--’ 

 G(bps3,(q))={100,101,110,111} 
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D-index: Features 

 supports disk storage 

 insertion needs one bucket access 

 distance computations vary from m1 up to ∑i=1..h mi 

 h+1 bucket accesses at maximum 

 for all queries such that qualifying objects are within  

 exact match (R(q,0)) 

 successful – one bucket access 

 unsuccessful – typically no bucket is accessed 
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Similarity Join Query 

 The similarity join can be evaluated by a simple 

algorithm which computes |X||Y| distances between 

all the pairs of objects. 

 

= NM distance computations 

X Y 



P. Zezula, G. Amato, V. Dohnal, 

M. Batko: Similarity Search: The 

Metric Space Approach Part II, Chapter 3 89 

Similarity Self Join Query 

 The similarity self join examines all pairs of 

objects of a set X, which is |X||X| distance 

computations. 

 Due to the symmetry property, d(x,y) = d(y,x), we 

can reduce the costs. 

 

 

 

 This is called the nested loops algorithm (NL). 

X 

2

)1( 


NN
distance computations 
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Similarity Self Join Query (cont.) 

 Specialized algorithms 

 usually built on top of a commercial DB system, or 

 tailored to specific needs of application. 

 D-index provides a very efficient algorithm for range 

queries: 

 a self join query can be evaluated using 

 Range Join Algorithm (RJ): 

  for each o in dataset X do 

         range_query(o, m) 

  end do 
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Extended D-index (eD-index) 

 A variant of D-index which provides a specialized 

algorithm for similarity joins. 

 Application independent – general solution. 

 

 Split functions manage replication. 

 D-index’s algorithms for range & k-NN queries are 

only slightly modified.  
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eD-index: Similarity Self Join Query 

 Similarity self join is elaborated independently in each 

bucket. 

 The result set is a union of answers of all sub-queries. 

m 

The lost pair!!! 

Separable set 0 
Exclusion set 

Separable set 1 
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eD-index: Overloading Principle 

 Lost pairs are handled by replications 

 areas of width e are replicated in the exclusion set. 

 m ≤ e 
m 

Separable set 0 
Exclusion set 

e 

Objects replicated to the exclusion set 

The duplicate !!! 

Separable set 1 
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eD-index: -Split Function Modification 

 The modification of -split function is implemented in 

the insertion algorithm by varying the parameter  

 the original stop condition in the D-index’s algorithm is 

changed. 

Separable set 0 

dm 

2 
2( +e) 

Exclusion set 

Separable set 1 

p 
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eD-index: Insertion Algorithm 

 eDindex,e(X, m1, m2, …, mh) 

 Algorithm – insert the object oN: 
 for i=1 to h do 

  if bpsmi,(oN)  ‘-’ then 

     oN  bucket with the index bpsmi,(oN). 

     if bpsmi,e(oN)  ‘-’ then (not in the overloading area) 

        exit 

     end if 

  end if 

 end do 

 oN  global exclusion bucket. 
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Bucket of 1st level 

Bucket of 2nd level 

eD-index: Handling Duplicates 

e 

3rd level 

2nd level 

1st level brown 

green 

blue 

brown 
green 

The duplicates received 

brown & green colors.  
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eD-index: Overloading Join Algorithm 

Given similarity self-join query SJ(m): 

 Execute the query in every separable bucket on 

every level 

 and in the global exclusion bucket. 

 In the bucket, apply sliding window algorithm. 

 The query’s result is formed by concatenation of all 

sub-results. 
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 Use the triangle inequality 
 to avoid checking all pairs of objects in the bucket. 

 Order all objects on distances to one pivot. 

 The sliding window is then moved over all objects. 
 only pairs of objects in the window are examined. 

 
 
 
 

 

 
m 

eD-index: Sliding Window 

 Due to the triangle inequality, the pair of objects 
outside the window cannot qualify: 
 d(x,y)   d(x,p) - d(y,p) > m 
 

p 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 99 

eD-index: Sliding Window (cont.) 

 The algorithm also employs  

 the pivot filtering and  

 the eD-index’s coloring technique. 

 

 Given a pair of objects o1,o2: 

 if a color is shared, this pair must have been reported on 

the level having this color – the pair is ignored without 

distance computation, else 

 if d(o1,o2)≤m , it is an original qualifying pair. 
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eD-index: Limitations 

 Similarity self-join queries only 

 the query selectivity must satisfy: m ≤ e. 

 it is not very restrictive since we usually look for close pairs. 

 The parameters  and e depend on each other. 

 e ≤ 2 

 If e > 2, the overloading zone is wider than the exclusion 

zone. 

 because we do not replicate objects between separable sets – 

only between a separable set and the exclusion zone, 

 some qualifying pairs might be missed. 
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Centralized Index Structures 

for Large Databases 

1. M-tree family 

 

2. hash-based metric indexing 

 

3. performance trials 
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Performance Trials 

 experiments on M-tree and D-index 

 three sets of experiments: 

1. comparison of M-tree (tree-based approach) vs. D-index 

(hash-based approach) 

2. processing different types of queries 

3. scalability of the centralized indexes – growing the size of 

indexed dataset 
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Datasets and Distance Measures 

 trials performed on three datasets: 

 VEC: 45-dimensional vectors of image color features 

compared by the quadratic distance measure  

 URL: sets of URL addresses; the distance measure is 

based on the similarity of sets (Jaccard’s coefficient) 

 STR: sentences of a Czech language corpus compared 

using an edit distance 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part II, Chapter 3 104 

Datasets: Distance Distribution 

 distribution of distances within the datasets: 

 VEC: practically normal distance distribution 

 URL: discrete distribution 

 STR: skewed distribution 
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Trials: Measurements & Settings 

 CPU costs: number of distance computations 

 I/O costs: number of block reads 

 The same size of disk blocks 

 

 Query objects follow the dataset distribution 

 Average values over 50 queries: 

 Different query objects 

 The same selectivity 

 Radius or number of nearest neighbors 
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Comparison of Indexes 

 Comparing performance of 

 M-tree – a tree-based approach 

 D-index – hash-based approach  

 sequential scan (baseline) 

 

 Dataset of 11,100 objects 

 

 Range queries – increasing radius 

 maximal selectivity about 20% of the dataset 
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Comparison: CPU Costs 

 generally, D-index outperforms M-tree for smaller radii 

 D-index: pivot-based filtering depends on data distribution 

and query size 

 M-tree outperforms D-index for discrete distribution 

 pivot selection is more difficult for discrete distributions 
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Comparison: I/O Costs 

 M-tree needs twice the disk space to stored data than SEQ 

 inefficient if the distance function is easy to compute 

 D-index more efficient 

 a query with r=0: D-index accesses only one page 

(important, e.g., for deletion) 
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Different Query Types 

 comparing processing performance of different 

types of queries 

 range query 

 nearest neighbor query 

 similarity self join 

 

 M-tree, D-index, sequential scan 
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Range vs. k-NN: CPU Costs 

 nearest neighbor query: 

 similar trends for M-tree and D-index 

 the D-index advantage of small radii processing decreases 

 expensive even for small k – similar costs for both 1 and 100 

 D-index still twice as fast as M-tree 
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Range vs. k-NN: I/O Costs 

 nearest neighbor query: 

 similar trends for I/O costs as for CPU costs 

 D-index four times faster than M-tree 
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Similarity Self Join: Settings 

 J(X,X,m) – very demanding operation 

 three algorithms to compare: 

 NL: nested loops – naive approach 

 RJ: range join – based on D-index 

 OJ: overloading join – eD-index  

 for m: 2m ≤ , i.e. m ≤ 600 for vectors 

 datasets of about 11,000 objects 

 selectivity – retrieving up to 1,000,000 pairs (for high 

values of m) 
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Similarity Self Join: Complexity 

 Quadratic complexity 

 prohibitive for large DB 

 example: 50,000 sentences 

 a range query: 

 sequential scan takes about 16 seconds 

 

 a self join query: 

 nested loops algorithm takes 25,000 times more 

 about 4 days and 15 hours! 
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Similarity Join: Results 

 RJ and OJ costs increase rapidly (logarithmic scale) 

 OJ outperforms RJ twice (STR) and 7 times for VEC: 

 high distances between VEC objects 

 high pruning effectiveness of pivot-based filtering for 

smaller m 
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Scalability: CPU Costs 

 labels: radius or k + D (D-index), M (M-tree), SEQ 

 data: from 100,000 to 600,000 objects 

 M-tree and D-index are faster (D-index slightly better) 

 linear trends 

 range query: r = 1,000; 2,000  k-NN query: k = 1;  100 
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Scalability: I/O Costs 

 the same trends as for CPU costs 

 D-index more efficient than M-tree 

 exact match contrast: 

 M-tree: 6,000 block reads + 20,000 d. c. for 600,000 objects 

 D-index: read 1 block + 18 d. c. regardless of the data size 
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Scalability: Similarity Self Join 

 We use the speedup s as the performance 

measure: 

 

 

 

 

 

 Speedup measures how many times is a specific 

algorithm faster than NL. 

n 
s 

N N 

2 

) 1 (  
 

Distance 

computations of 

Nested Loops 

An algorithm’s  

distance  

computations 
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Scalability: Similarity Self Join (cont.) 

 STR dataset: from 50,000 to 250,000 sentences 

 constant speedup 
 E.g. a join query on 100,000 objects takes 10 minutes. 

 The same join query on 200,000 objects takes 40 minutes. 

 OJ at least twice faster than RJ 

 RJ: range join  OJ: overloading join 
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Scalability Experiments: Conclusions 

 similarity search is expensive 

 the scalability of centralized indexes is linear 

 

 cannot be applied to huge data archives 

 become inefficient after a certain point 

 

Possible solutions: 

 sacrifice some precision: approximate techniques 

 use more storage & computational power: 

distributed data structures 


