
SIMILARITY SEARCH

The Metric Space Approach

Pavel Zezula, Giuseppe Amato,

Vlastislav Dohnal, Michal Batko

http://www.nmis.isti.cnr.it/amato/similarity-search-book/

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 2

Table of Contents

Part I: Metric searching in a nutshell

 Foundations of metric space searching

 Survey of existing approaches

Part II: Metric searching in large collections

 Centralized index structures

 Approximate similarity search

 Parallel and distributed indexes

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 3

Features of “good” index structures

 Dynamicity
 support insertions and deletions and minimize their costs

 Disk storage
 for dealing with large collections of data

 CPU & I/O optimization
 support different distance measures with completely

different CPU requirements, e.g., L2 and quadratic-form
distance.

 Extensibility
 similarity queries, i.e., range query, k-nearest neighbors

query

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 4

Centralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 5

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 6

The M-tree

 Inherently dynamic structure

 Disk-oriented (fixed-size nodes)

 Built in a bottom-up fashion

 Inspired by R-trees and B-trees

 All data in leaf nodes

 Internal nodes: pointers to subtrees and additional

information

 Similar to GNAT, but objects are stored in leaves.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 7

M-tree: Internal Node

 Internal node consists of an entry for each subtree

 Each entry consists of:

 Pivot: p

 Covering radius of the sub-tree: rc

 Distance from p to parent pivot pp: d(p,pp)

 Pointer to sub-tree: ptr

 All objects in subtree ptr are within the distance rc from p.

 1111),,(,, ptrppdrp pc m
p

m
c
mm ptrppdrp),,(,, 2222),,(,, ptrppdrp pc

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 8

M-tree: Leaf Node

 leaf node contains data entries

 each entry consists of pairs:

 object (its identifier): o

 distance between o and its parent pivot: d(o,op)

),(, 11
poodo),(, 22

poodo),(, p
mm oodo

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 9

o7

M-tree: Example

o1
o6

o10

o3

o2

o5

o4

o9

o8

o11

o1 4.5 -.- o2 6.9 -.-

o1 1.4 0.0 o10 1.2 3.3 o7 1.3 3.8 o2 2.9 0.0 o4 1.6 5.3

o2 0.0 o8 2.9 o1 0.0 o6 1.4 o10 0.0 o3 1.2

o7 0.0 o5 1.3 o11 1.0 o4 0.0 o9 1.6

Covering

radius

Distance

to parent

Distance

to parent

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 10

M-tree: Insert

 Insert a new object oN:

 recursively descend the tree to locate the most

suitable leaf for oN

 in each step enter the subtree with pivot p for

which:

 no enlargement of radius rc needed, i.e., d(oN,p) ≤ rc

 in case of ties, choose one with p nearest to oN

 minimize the enlargement of rc

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 11

M-tree: Insert (cont.)

 when reaching leaf node N then:

 if N is not full then store oN in N

 else Split(N,oN).

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 12

M-tree: Split

Split(N,oN):

 Let S be the set containing all entries of N and oN

 Select pivots p1 and p2 from S

 Partition S to S1 and S2 according to p1 and p2

 Store S1 in N and S2 in a new allocated node N’

 If N is root

 Allocate a new root and store entries for p1, p2 there

 else (let Np and pp be the parent node and parent pivot of N)

 Replace entry pp with p1

 If Np is full, then Split(Np,p2)

 else store p2 in node Np

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 13

M-tree: Pivot Selection

 Several pivots selection policies
 RANDOM – select pivots p1, p2 randomly

 m_RAD – select p1, p2 with minimum (r1
c + r2

c)

 mM_RAD – select p1, p2 with minimum max(r1
c, r2

c)

 M_LB_DIST – let p1 = pp and p2 = oi | maxi { d(oi,p
p) }

 Uses the pre-computed distances only

 Two versions (for most of the policies):

 Confirmed – reuse the original pivot pp and select only one

 Unconfirmed – select two pivots (notation: RANDOM_2)

 In the following, the mM_RAD_2 policy is used.

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 14

M-tree: Split Policy

 Unbalanced

 Generalized hyperplane

 Balanced

 Larger covering radii

 Worse than unbalanced

one

p2

p1

p2

p1

 Partition S to S1 and S2 according to p1 and p2

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 15

M-tree: Range Search

Given R(q,r):

 Traverse the tree in a depth-first manner

 In an internal node, for each entry p,rc,d(p,pp),ptr
 Prune the subtree if |d(q,pp) – d(p,pp)| – rc > r

 Application of the pivot-pivot constraint

q

q

r

p
rc

pp r

p
rc

pp

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 16

M-tree: Range Search (cont.)

 If not discarded, compute d(q,p) and

 Prune the subtree if d(q,p) – rc > r

 Application of the range-pivot constraint

 All non-pruned entries are searched recursively.

q
p

rc r

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 17

M-tree: Range Search in Leaf Nodes

 In a leaf node, for each entry o,d(o,op)

 Ignore entry if |d(q,op) – d(o,op)| > r

 else compute d(q,o) and check d(q,o) ≤ r

 Application of the object-pivot constraint

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 18

M-tree: k-NN Search

Given k-NN(q):

 Based on a priority queue and the pruning
mechanisms applied in the range search.

 Priority queue:
 Stores pointers to sub-trees where qualifying objects can

be found.

 Considering an entry E=p,rc,d(p,pp),ptr, the pair
ptr,dmin(E) is stored.

 dmin(E)=max { d(p,q) – rc, 0 }

 Range pruning: instead of fixed radius r, use the
distance to the k-th current nearest neighbor.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 19

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 20

Bulk-Loading Algorithm

 first extension of M-tree

 improved tree-building (insert) algorithm

 requires the dataset to be given in advance

 Notation:

 Dataset X={o1,…,on}

 Number of entries per node: m

 Bulk-Loading Algorithm:

 First phase: build the M-tree

 Second phase: refinement of unbalanced tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 21

Bulk-Loading: First Phase

 randomly select l pivots P={p1,…,pl} from X

 Usually l=m

 objects from X are assigned to the nearest pivot

producing l subsets P1,…,Pl

 recursively apply the bulk-loading algorithm to the

subsets and obtain l sub-trees T1,…,Tl

 leaf nodes with maximally l objects

 create the root node and connect all the sub-trees to

it.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 22

Bulk-Loading: Example (1)

o1

o4
o5

o2

o6 o8

o9

o7 o3

o1 o2 o3

root

o’3 o7 o6 o’1 o5 o4

o”3 o9 o8

s
u

b
-t

re
e

s
u
p
e
r-

tr
e
e

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 23

Bulk-Loading: Discussion

Problem of choosing pivots P={p1,…,pl}

 sparse region shallow sub-tree

 far objects assigned to other pivots

 dense region deep sub-tree

 observe this phenomenon in the example

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 24

Bulk-Loading: Second Phase

 refinement of the unbalanced M-tree

 apply the following two techniques to adjust the set

of pivots P={p1,…,pl}

 under-filled nodes – reassign to other pivots and

delete corresponding pivots from P

 deeper subtrees – split into shallower ones and add the

obtained pivots to P

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 25

 Under-filled nodes in the example: o’1,o9

Bulk-Loading: Example (2)

o1

o’1 o5 o4 o’4 o5

o4 o’3

o”3 o9 o8
o”3 o8

o’3

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 26

Bulk-Loading: Example (3)

 After elimination of under-filled nodes.

o2 o3

root

o7 o6

s
u
b

-t
re

e

s
u
p
e
r-

tr
e
e

o’4 o5

o4

o”3 o8

o’3

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 27

 Sub-trees rooted in o4 and o3 in the tree are deeper

 split them into new subtrees rooted in o’4, o5, o”3, o8,

o6, o7

 add them into P and remove o4,o3

 build the super-tree (two levels) over the final set of

pivots P={o2,o’4,o5,o”3,o8,o6,o7} – from Sample (3)

Bulk-Loading: Example (4)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 28

Bulk-Loading: Example (5) – Final

o1

o4
o5

o2

o6 o8

o9

o7 o3

o2

root

o3

o3 o6 o8

s
u

b
-t

re
e

s
u

p
e
r-

tr
e

e

o4 o5

o4

o2 o7

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 29

Bulk-Loading: Optimization

 Reduce the number of distance computations in the

recursive calling of the algorithm

 after initial phase, we have distances d(pj,oi) for all

objects X={o1,…,on} and all pivots P={p1,…,pl}

 Assume the recursive processing of P1

 New set of pivots is picked {p1,1 , …, p1,l’}

 During clustering, we are assigning every object oP1 to its

nearest pivot.

 The distance d(p1,j ,o) can be lower-bounded:

 |d(p1,o) – d(p1,p1,j)| ≤ d(p1,j ,o)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 30

Bulk-Loading: Optimization (cont.)

 If this lower-bound is greater than the distance to

the closest pivot p1,N so far, i.e.,

 |d(p1,o) – d(p1,p1,j)| > d(p1,N ,o)

 then the evaluation of d(p1,j ,o) can be avoided.

 Cuts costs by 11%

 It uses pre-computed distances to a single pivot.

 by 20% when pre-computed distances to multiple pivots

are used.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 31

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 32

Multi-Way Insertion Algorithm

 another extension of M-tree insertion algorithm

 objective: build more compact trees

 reduce search costs (both I/O and CPU)

 for dynamic datasets (not necessarily given in

advance)

 increase insertion costs slightly

 the original single-way insertion visits exactly one

root-leaf branch

 leaf with no or minimum increase of covering radius

 not necessarily the most convenient

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 33

Multi-Way Insertion: Principle

 when inserting an object oN

 run the point query R(oN,0)

 for all visited leaves (they can store oN without radii

enlargement): compute the distance between oN

and the leaf’s pivot

 choose the closest pivot (leaf)

 if no leaf visited – run the single-way insertion

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 34

Multi-Way Insertion: Analysis

Insertion costs:

 25% higher I/O costs (more nodes examined)

 higher CPU costs (more distances computed)

Search costs:

 15% fewer disk accesses

 almost the same CPU costs for the range query

 10% fewer distance computations for k-NN query

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 35

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 36

The Slim Tree

 extension of M-tree – the same structure

 speed up insertion and node splitting

 improve storage utilization

 new node-selection heuristic for insertion

 new node-splitting algorithm

 special post-processing procedure

 make the resulting trees more compact.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 37

Slim Tree: Insertion

Starting at the root node, in each step:

 find a node that covers the incoming object

 if none, select the node whose pivot is the nearest

 M-tree would select the node whose covering radius

requires the smallest expansion

 if several nodes qualify, select the one which

occupies the minimum space

 M-trees would choose the node with closest pivot

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 38

Slim Tree: Insertion Analysis

 fill insufficiently occupied nodes first

 defer splitting, boost node utilization, and cut the tree size

 experimental results (the same mM_RAD_2

splitting policy) show:

 lower I/O costs

 nearly the same number of distance computations

 this holds for both the tree building procedure and the

query execution

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 39

Slim Tree: Node Split

 splitting of the overfilled nodes – high costs

 mM_RAD_2 strategy is considered the best so far

 Complexity O(n3) using O(n2) distance computations

 the Slim Tree splitting based on the minimum

spanning tree (MST)

 Complexity O(n2logn) using O(n2) distance computations

 the MST algorithm assumes a full graph

 n objects

 n(n-1) edges – distances between objects

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 40

Slim Tree: Node Split (cont.)

Splitting policy based on the MST:

1. build the minimum spanning tree on the full graph

2. delete the longest edge

3. the two resulting sub-graphs form the new nodes

4. choose the pivot for each node as the object whose

distance to the others in the group is the shortest

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 41

Slim Tree: Node Split – Example

 (a) the original Slim Tree node

 (b) the minimum spanning tree

 (c) the new two nodes

o1

o2

o3 o4

o5

o7

o6

oN
o1

o2

o3 o4

o5

o7

o6

oN o1

o2

o3 o4

o5

o7

o6

oN

(a) (b) (c)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 42

Slim Tree: Node Split – Discussion

 does not guarantee the balanced split

 a possible variant (more balanced splits):

 choose the most appropriate edge from among the longer

edges in the MST

 if no such edge is found (e.g., for a star-shaped dataset),

accept the original unbalanced split

 experiments prove that:

 tree building using the MST algorithm is at least forty times

faster than the mM_RAD_2 policy

 query execution time is not significantly better

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 43

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 44

Slim-Down Algorithm

 post-processing procedure

 reduce the fat-factor of the tree

 basic idea: reduce the overlap between nodes on one level

 minimize number of nodes visited by a point query, e.g.,

R(o3,0)

o4

o3
o2 o1

o5

Node N

Node M

o4

o3
o2 o1

o5

Node N

Node M

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 45

Slim-Down Algorithm: The Principle

For each node N at the leaf level:
1. Find object o furthest from pivot of N

2. Search for a sibling node M that also covers o.
If such a not-fully-occupied node exists, move o from N to M

and update the covering radius of N.

 Steps 1 and 2 are applied to all nodes at the given
level. If an object is relocated after a complete loop,
the entire algorithm is executed again.

 Observe moving of o3 from N to M on previous slide.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 46

Slim-Down Algorithm: Discussion

 Prevent from infinite loop

 cyclic moving of objects o4,o5,o6

 Limit the number of algorithm

cycles

 Trials proved reducing of I/O costs of at least 10%

 The idea of dynamic object relocation can be also

applied to defer splitting.

 Move distant objects from a node instead of splitting it.

o1 o2

o3

o5 o6

o4

o8

o9

o7

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 47

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 48

Generalized Slim-Down Algorithm

 generalization of Slim-down algorithm for non-leaf

tree levels

 the covering radii rc must be taken into account

before moving a non-leaf entry

 the generalized Slim-down starts from the leaf level

 follow the original Slim-down algorithm for leaves

 ascend up the tree terminating in the root

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 49

Generalized Slim-Down: The Principle

For each entry E=p,rc,… at given non-leaf level:

 pose range query R(p,rc),

 the query determines the set of nodes that entirely

contain the query region,

 from this set, choose the node M whose parent pivot

is closer to p than to pp,

 if such M exists, move the entry E from N to M,

 if possible, shrink the covering radius of N.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 50

Generalized Slim-Down: Example

 Leaf level:
 move two objects from o3 and o4 to o1 – shrink o3 and o4

 Upper level:
 originally node M contains o1,o4 and node N contains o2,o3

 swap the nodes of o3 and o4

o1
o4

o2

o3

o1
o4

o2

o3

Node M

Node N

Node M Node N

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 51

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 52

Pivoting M-tree

 upgrade of the standard M-tree

 bound the region covered by nodes more tightly

 define additional ring regions that restrict the ball regions

 ring regions: pivot p and two radii rmin, rmax

 such objects o that: rmin ≤ d(o,p) ≤ rmax

 basic idea:

 Select additional pivots

 Every pivot defines two boundary values between which all

node’s objects lie.

 Boundary values for each pivot are stored in every node.

(see a motivation example on the next slide)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 53

PM-tree: Motivation Example

 original M-tree

 range query R(q,r)

intersects the node

region

 PM-tree (two pivots)

 this node not visited

for query R(q,r)

r

q

p2 r

q

p1

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 54

PM-tree: Structure

 select additional set of pivots |P|=np

 leaf node entry: o,d(o,op),PD

 PD – array of npd pivot distances: PD[i]=d(pi,o)

 Parameter npd < np

 internal node entry: p,rc,d(p,pp),ptr,HR

 HR – array of nhr intervals defining ring regions

 parameter nhr < np

})|),(max({max].[

})|),(min({min].[

ptropodjHR

ptropodjHR

j

j

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 55

PM-tree: Insertion

 insertion of object oN

 the HR arrays of nodes visited during insertion must

be updated by values d(oN,pi) for all i ≤ nhr

 the leaf node:

 create array PD and fill it with values d(oN,pj), j ≤ npd

 values d(oN,pj) are computed only once and used

several times – max(nhr ,npd) distance computations

 insertions may force node splits

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 56

PM-tree: Node Split

 node splits require some maintenance

 leaf split:

 set arrays HR of two new internal entries

 set HR[i].min and HR[i].max as min/max of PD[j]

 compute additional distances: d(pj ,o), j (npd < j ≤ nhr)

and take them into account

 can be expensive if nhr >> npd

 internal node split:

 creating two internal node entries with HR

 set these HR arrays as union over all HR arrays of

respective entries

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 57

PM-tree: Range Query

Given R(q,r):

 evaluate distances d(q,pi), i (i ≤ max(nhr ,npd))

 traverse the tree, internal node p,rc,d(p,pp),ptr,HR
is visited if both the expressions hold:

 leaf node entry test:

 M-tree: the first condition only

crrpqd),(

min)].[),(max].[),((

1

iHRrpqdiHRrpqd ii

n

i

hr

)|][),((|

1

riPDpqd i

n

i

pd

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 58

PM-tree: Parameter Setting

 general statements:

 existence of PD arrays in leaves reduce number of

distance computations but increase the I/O cost

 the HR arrays reduce both CPU and I/O costs

 experiments proof that:

 npd=0 decreases I/O costs by 15% to 35% comparing to M-

tree (for various values of nhr)

 CPU cost reduced by about 30%

 npd=nhr / 4 leads to the same I/O costs as for M-tree

 with this setting – up to 10 times faster

 particular parameter setting depends on application

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 59

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 60

The M+-tree

 modification of the M-tree

 restrict the application to Lp metrics (vector spaces)

 based on the concept of key dimension

 each node partitioned into two twin-nodes

 partition according to a selected key dimension

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 61

M+-tree: Principles

 in an n-dimensional vector space

 key dimension for a set of objects is the dimension

along which the data objects are most spread

 for any dimension Dkey and vectors (x1,…xn),(y1,…yn)

 this holds also for other Lp metrics

 this fact is applied to prune the search space

22
11)()(|| nnDD yxyxyx

keykey

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 62

M+-tree: Structure

 internal node is divided into two subsets

 according to a selected dimension

 leaving a gap between the two subsets

 the greater the gap the better filtering

 internal node entry:

 Dkey – number of the key dimension

 ptrleft ,ptrright – pointers to the left and right twin-nodes

 dlmax – maximal key-dimension value of the left twin

 drmin – minimal key-dimension value of the right twin

 rightrminlmaxleftkey
pc ptrddptrDppdrp ,,,,),,(,,

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 63

M+-tree: Example

 splitting of an overfilled node:

 objects of both twins are considered as a single set

 apply standard mM_RAD_2 strategy

 select the key dimension for each node separately

oN oN

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 64

M+-tree: Performance

 slightly more efficient than M-tree

 better filtering for range queries with small radii

 practically the same for larger radii

 nearest neighbor queries:

 a shorter priority queue – only one of the twin-nodes

 save some time for queue maintenance

 moderate performance improvements

 application restricted to vector datasets with Lp

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 65

M-tree Family

 The M-tree

 Bulk-Loading Algorithm

 Multi-Way Insertion Algorithm

 The Slim Tree

 Slim-Down Algorithm

 Generalized Slim-Down Algorithm

 Pivoting M-tree

 The M+-tree

 The M2-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 66

The M2-tree

 generalization of M-tree

 able to process complex similarity queries

 combined queries on several metrics at the same time

 for instance: an image database with keyword-annotated

objects and color histograms

 query: Find images that contain a lion and the scenery

around it like this.

 qualifying objects identified by a scoring function df

 combines the particular distances (according to several

different measures)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 67

M2-tree: Structure

 each object characterized by several features

 e.g. o[1],o[2]

 respective distance measures may differ: d1,d2

 leaf node: M-tree vs. M2-tree

 internal node: M-tree vs. M2-tree

),(, podo])2[],1[(],2[]),1[],1[(],1[21 podopodo

 ptrppdrp pc),,(,,

 ptrppdrpppdrp pcpc]),2[],2[(],2[],2[]),1[],1[(],1[],1[21

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 68

M2-tree: Example

 the space transformation according to particular

features can be seen as an n-dimensional space

 the subtree region forms a hypercube

o1

o2
o5

o4

])1[],1[(1 pod i

])2[],2[(2 pod i

]2[cr

])2[],1[pp
]1[cr

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 69

M2-tree: Range Search

Given R(q,r):

 M-tree prunes a subtree if |d(q,pp) – d(p,pp)| – rc > r

 M2-tree: compute the lower bound for every feature

 combine these bounds using the scoring function df

 visit those entries for which the result is ≤ r

 analogous strategy for nearest neighbor queries

)0],[|])[],[(])[],[(min(|, iripipdipiqdi cp
i

p
i

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 70

M2-tree: Performance

 running k-NN queries

 image database mentioned in the example

 M2-tree compared with sequential scan

 the same I/O costs

 reduced number of distance computations

 M2-tree compared with Fagin’s A0 (two M-trees)

 M2-tree saves about 30% of I/Os

 about 20% of distance computations

 A0 have higher I/O cost than the sequential scan

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 71

Centralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

 Distance Index (D-index)

 Extended D-Index (eD-index)

3. performance trials

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 72

Distance Index (D-index)

 Hybrid structure

 combines pivot-filtering and partitioning.

 Multilevel structure based on hashing

 one -split function per level.

 The first level splits the whole data set.

 Next level partitions the exclusion zone of the

previous level.

 The exclusion zone of the last level forms the

exclusion bucket of the whole structure.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 73

D-index: Structure

4 separable buckets at

the first level

2 separable buckets at

the second level

exclusion bucket of

the whole structure

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 74

D-index: Partitioning

 Based on excluded middle partitioning

 ball partitioning variant is used.

 bps1,(x)=

0 if d(x,p) ≤ dm -

1 if d(x,p) > dm +

− otherwise

dm

2

p Separable set 1

Separable set 0

Exclusion set

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 75

D-index: Binary -Split Function

 Binary mapping: bps1,: D → {0,1,−}

 -split function, ≥ 0

 also called the first order -split function

 Separable property (up to 2):

 x,y D, bps1,(x) = 0 and bps1,(y) = 1 d(x,y) > 2

 No objects closer than 2 can be found in both the
separable sets.

 Symmetry property: x,y D, 2 ≥ 1,

 bps1,2(x) −, bps1,1(y) = − d(x,y) > 2 - 1

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 76

2

D-index: Symmetry Property

 Ensures that the exclusion set “shrinks” in a

symmetric way as decreases.

 We want to test whether a query intersects the

exclusion set or not.

2(+r)

q2

r

q1

r

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 77

dm1

2

D-index: General -Split Function

 Combination of several binary -split functions

 two in the example

dm2

2

Separable

set 1

Separable

set 0

Exclusion

set

Separable

set 3

Separable

set 2

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 78

D-index: General -Split Function

 A combination of n first order -split functions:

 bpsn,: D → {0..2n-1, −}

 bpsn,(x) =

 Separable & symmetry properties hold

 resulting sets are also separable up to 2.

− if i, bpsi
1,(x) = −

b all bpsi
1,(x) form a binary number b

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 79

D-index: Insertion

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 80

D-index: Insertion Algorithm

 Dindex(X, m1, m2, …, mh)

 h – number of levels,

 mi – number of binary functions combined on level i.

 Algorithm – insert the object oN:

 for i=1 to h do

 if bpsmi,(oN) ‘-’ then

 oN bucket with the index bpsmi,(oN).

 exit

 end if

 end do

 oN global exclusion bucket.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 81

D-index: Insertion Algorithm (cont.)

 The new object is inserted with one bucket access.

 Requires distance computations

 assuming oN was inserted in a bucket on the level j.

j

i im
1

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 82

D-index: Range Query

 Dindex(X, m1, m2, …, mh)

 h – number of levels,

 mi – number of binary functions combined on level i.

Given a query R(q,r) with r ≤:

for i=1 to h do

 search in the bucket with the index bpsmi,0(q).

end do

search in the global exclusion bucket.

 Objects o, d(q,o)≤r, are reported on the output.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 83

D-index: Range Search (cont.)

q

r

q

r

q

r

q

r

q

r

q

r

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 84

D-index: Range Query (cont.)

 The call bpsmi,0(q) always returns a value between

0 and 2mi -1.

 Exactly one bucket per level is accessed if r ≤

 h+1 bucket access.

 Reducing the number of bucket accesses:

 the query region is in the exclusion set proceed the next

level directly,

 the query region is in a separable set terminate the

search.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 85

D-index: Advanced Range Query

for i = 1 to h

 if bpsmi,+r (q) − then (exclusively in the separable bucket)

 search in the bucket with the index bpsmi,+r (q).

 exit (search terminates)

 end if

 if r ≤ then (the search radius up to)

 if bpsmi,-r (q) − then (not exclusively in the exclusion zone)

 search in the bucket with the index bpsmi,r (q).

 end if

 else (the search radius greater than)

 let {i1,…in} = G(bpsmi,r (q))

 search in the buckets with the indexes i1,…,in.

 end if

end for
search in the global exclusion bucket.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 86

D-index: Advanced Range Query (cont.)

 The advanced algorithm is not limited to r≤.

 All tests for avoiding some bucket accesses are

based on manipulation of parameters of split

functions (i.e.).

 The function G() returns a set of bucket indexes:

 all minuses (-) in the split functions’ results are substituted

by all combinations of ones and zeros,

 e.g. bps3,(q)=‘1--’

 G(bps3,(q))={100,101,110,111}

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 87

D-index: Features

 supports disk storage

 insertion needs one bucket access

 distance computations vary from m1 up to ∑i=1..h mi

 h+1 bucket accesses at maximum

 for all queries such that qualifying objects are within

 exact match (R(q,0))

 successful – one bucket access

 unsuccessful – typically no bucket is accessed

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 88

Similarity Join Query

 The similarity join can be evaluated by a simple

algorithm which computes |X||Y| distances between

all the pairs of objects.

= NM distance computations

X Y

P. Zezula, G. Amato, V. Dohnal,

M. Batko: Similarity Search: The

Metric Space Approach Part II, Chapter 3 89

Similarity Self Join Query

 The similarity self join examines all pairs of

objects of a set X, which is |X||X| distance

computations.

 Due to the symmetry property, d(x,y) = d(y,x), we

can reduce the costs.

 This is called the nested loops algorithm (NL).

X

2

)1(

NN
distance computations

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 90

Similarity Self Join Query (cont.)

 Specialized algorithms

 usually built on top of a commercial DB system, or

 tailored to specific needs of application.

 D-index provides a very efficient algorithm for range

queries:

 a self join query can be evaluated using

 Range Join Algorithm (RJ):

 for each o in dataset X do

 range_query(o, m)

 end do

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 91

Extended D-index (eD-index)

 A variant of D-index which provides a specialized

algorithm for similarity joins.

 Application independent – general solution.

 Split functions manage replication.

 D-index’s algorithms for range & k-NN queries are

only slightly modified.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 92

eD-index: Similarity Self Join Query

 Similarity self join is elaborated independently in each

bucket.

 The result set is a union of answers of all sub-queries.

m

The lost pair!!!

Separable set 0
Exclusion set

Separable set 1

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 93

eD-index: Overloading Principle

 Lost pairs are handled by replications

 areas of width e are replicated in the exclusion set.

 m ≤ e
m

Separable set 0
Exclusion set

e

Objects replicated to the exclusion set

The duplicate !!!

Separable set 1

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 94

eD-index: -Split Function Modification

 The modification of -split function is implemented in

the insertion algorithm by varying the parameter

 the original stop condition in the D-index’s algorithm is

changed.

Separable set 0

dm

2
2(+e)

Exclusion set

Separable set 1

p

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 95

eD-index: Insertion Algorithm

 eDindex,e(X, m1, m2, …, mh)

 Algorithm – insert the object oN:
 for i=1 to h do

 if bpsmi,(oN) ‘-’ then

 oN bucket with the index bpsmi,(oN).

 if bpsmi,e(oN) ‘-’ then (not in the overloading area)

 exit

 end if

 end if

 end do

 oN global exclusion bucket.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 96

Bucket of 1st level

Bucket of 2nd level

eD-index: Handling Duplicates

e

3rd level

2nd level

1st level brown

green

blue

brown
green

The duplicates received

brown & green colors.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 97

eD-index: Overloading Join Algorithm

Given similarity self-join query SJ(m):

 Execute the query in every separable bucket on

every level

 and in the global exclusion bucket.

 In the bucket, apply sliding window algorithm.

 The query’s result is formed by concatenation of all

sub-results.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 98

 Use the triangle inequality
 to avoid checking all pairs of objects in the bucket.

 Order all objects on distances to one pivot.

 The sliding window is then moved over all objects.
 only pairs of objects in the window are examined.

m

eD-index: Sliding Window

 Due to the triangle inequality, the pair of objects
outside the window cannot qualify:
 d(x,y) d(x,p) - d(y,p) > m

p

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 99

eD-index: Sliding Window (cont.)

 The algorithm also employs

 the pivot filtering and

 the eD-index’s coloring technique.

 Given a pair of objects o1,o2:

 if a color is shared, this pair must have been reported on

the level having this color – the pair is ignored without

distance computation, else

 if d(o1,o2)≤m , it is an original qualifying pair.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 100

eD-index: Limitations

 Similarity self-join queries only

 the query selectivity must satisfy: m ≤ e.

 it is not very restrictive since we usually look for close pairs.

 The parameters and e depend on each other.

 e ≤ 2

 If e > 2, the overloading zone is wider than the exclusion

zone.

 because we do not replicate objects between separable sets –

only between a separable set and the exclusion zone,

 some qualifying pairs might be missed.

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 101

Centralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 102

Performance Trials

 experiments on M-tree and D-index

 three sets of experiments:

1. comparison of M-tree (tree-based approach) vs. D-index

(hash-based approach)

2. processing different types of queries

3. scalability of the centralized indexes – growing the size of

indexed dataset

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 103

Datasets and Distance Measures

 trials performed on three datasets:

 VEC: 45-dimensional vectors of image color features

compared by the quadratic distance measure

 URL: sets of URL addresses; the distance measure is

based on the similarity of sets (Jaccard’s coefficient)

 STR: sentences of a Czech language corpus compared

using an edit distance

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 104

Datasets: Distance Distribution

 distribution of distances within the datasets:

 VEC: practically normal distance distribution

 URL: discrete distribution

 STR: skewed distribution

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 105

Trials: Measurements & Settings

 CPU costs: number of distance computations

 I/O costs: number of block reads

 The same size of disk blocks

 Query objects follow the dataset distribution

 Average values over 50 queries:

 Different query objects

 The same selectivity

 Radius or number of nearest neighbors

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 106

Comparison of Indexes

 Comparing performance of

 M-tree – a tree-based approach

 D-index – hash-based approach

 sequential scan (baseline)

 Dataset of 11,100 objects

 Range queries – increasing radius

 maximal selectivity about 20% of the dataset

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 107

Comparison: CPU Costs

 generally, D-index outperforms M-tree for smaller radii

 D-index: pivot-based filtering depends on data distribution

and query size

 M-tree outperforms D-index for discrete distribution

 pivot selection is more difficult for discrete distributions

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 108

Comparison: I/O Costs

 M-tree needs twice the disk space to stored data than SEQ

 inefficient if the distance function is easy to compute

 D-index more efficient

 a query with r=0: D-index accesses only one page

(important, e.g., for deletion)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 109

Different Query Types

 comparing processing performance of different

types of queries

 range query

 nearest neighbor query

 similarity self join

 M-tree, D-index, sequential scan

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 110

Range vs. k-NN: CPU Costs

 nearest neighbor query:

 similar trends for M-tree and D-index

 the D-index advantage of small radii processing decreases

 expensive even for small k – similar costs for both 1 and 100

 D-index still twice as fast as M-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 111

Range vs. k-NN: I/O Costs

 nearest neighbor query:

 similar trends for I/O costs as for CPU costs

 D-index four times faster than M-tree

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 112

Similarity Self Join: Settings

 J(X,X,m) – very demanding operation

 three algorithms to compare:

 NL: nested loops – naive approach

 RJ: range join – based on D-index

 OJ: overloading join – eD-index

 for m: 2m ≤ , i.e. m ≤ 600 for vectors

 datasets of about 11,000 objects

 selectivity – retrieving up to 1,000,000 pairs (for high

values of m)

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 113

Similarity Self Join: Complexity

 Quadratic complexity

 prohibitive for large DB

 example: 50,000 sentences

 a range query:

 sequential scan takes about 16 seconds

 a self join query:

 nested loops algorithm takes 25,000 times more

 about 4 days and 15 hours!

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 114

Similarity Join: Results

 RJ and OJ costs increase rapidly (logarithmic scale)

 OJ outperforms RJ twice (STR) and 7 times for VEC:

 high distances between VEC objects

 high pruning effectiveness of pivot-based filtering for

smaller m

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 115

Scalability: CPU Costs

 labels: radius or k + D (D-index), M (M-tree), SEQ

 data: from 100,000 to 600,000 objects

 M-tree and D-index are faster (D-index slightly better)

 linear trends

 range query: r = 1,000; 2,000 k-NN query: k = 1; 100

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 116

Scalability: I/O Costs

 the same trends as for CPU costs

 D-index more efficient than M-tree

 exact match contrast:

 M-tree: 6,000 block reads + 20,000 d. c. for 600,000 objects

 D-index: read 1 block + 18 d. c. regardless of the data size

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 117

Scalability: Similarity Self Join

 We use the speedup s as the performance

measure:

 Speedup measures how many times is a specific

algorithm faster than NL.

n
s

N N

2

) 1 (

Distance

computations of

Nested Loops

An algorithm’s

distance

computations

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 118

Scalability: Similarity Self Join (cont.)

 STR dataset: from 50,000 to 250,000 sentences

 constant speedup
 E.g. a join query on 100,000 objects takes 10 minutes.

 The same join query on 200,000 objects takes 40 minutes.

 OJ at least twice faster than RJ

 RJ: range join OJ: overloading join

P. Zezula, G. Amato, V. Dohnal, M. Batko:

Similarity Search: The Metric Space Approach Part II, Chapter 3 119

Scalability Experiments: Conclusions

 similarity search is expensive

 the scalability of centralized indexes is linear

 cannot be applied to huge data archives

 become inefficient after a certain point

Possible solutions:

 sacrifice some precision: approximate techniques

 use more storage & computational power:

distributed data structures

